Influence of non-Newtonian rheology on magma degassing

نویسندگان

  • Thibaut Divoux
  • Valérie Vidal
  • Maurizio Ripepe
  • Jean-Christophe Géminard
چکیده

Many volcanoes exhibit temporal changes in their degassing process, from rapid gas puffing to lava fountaining and long-lasting quiescent passive degassing periods. This range of behaviors has been explained in terms of changes in gas flux and/or magma input rate. We report here a simple laboratory experiment which shows that the nonNewtonian rheology of magma can be responsible, alone, for such intriguing behavior, even in a stationary gas flux regime. We inject a constant gas flow-rate Q at the bottom of a non-Newtonian fluid column, and demonstrate the existence of a critical flow rate Q above which the system spontaneously alternates between a bubbling and a channeling regime, where a gas channel crosses the entire fluid column. The threshold Q* depends on the fluid rheological properties which are controlled, in particular, by the gas volume fraction (or void fraction) φ. When φ increases, Q decreases and the degassing regime changes. Non-Newtonian properties of magma might therefore play a crucial role in volcanic eruption dynamics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unsteady boundary layer flow of a Casson fluid past a wedge with wall slip velocity

In this paper an analysis is presented to understand the effect of non–Newtonian rheology, velocity slip at the boundary, thermal radiation, heat absorption/generation and first order chemical reaction on unsteady MHD mixed convective heat and mass transfer of Casson fluid past a wedge in the presence of a transverse magnetic field with variable electrical conductivity. The partial differential...

متن کامل

Syn-Emplacement Fracturing in the Sandfell Laccolith, Eastern Iceland—Implications for Rhyolite Intrusion Growth and Volcanic Hazards

Felsic magma commonly pools within shallow mushroom-shaped magmatic intrusions, so-called laccoliths or cryptodomes, which can cause both explosive eruptions and collapse of the volcanic edifice. Deformation during laccolith emplacement is primarily considered to occur in the host rock. However, shallowly emplaced laccoliths (cryptodomes) show extensive internal deformation. While deformation o...

متن کامل

RHEOLOGICAL BEHAVIOR OF VESICULAR MAGMA The literature on magma rheology and strain localization focuses on the role of crys- tals in modifying the Newtonian magma rheol-

1023 ABSTRACT The rheology of twoor three-phase magmas has been the focus of much interest because it controls magma ascent and eruption behavior. Research on magma rheology has typically considered homogeneous fl ow. Here we demonstrate, based on natural examples, that strain resulting from viscous fl ow preceding explosive fragmentation localizes into shear zones at a microscopic scale. Strai...

متن کامل

Traveling Waves of Some Symmetric Planar Flows of Non-Newtonian Fluids

We present some variants of Burgers-type equations for incompressible and isothermal planar flow of viscous non-Newtonian fluids based on the Cross, the Carreau and the power-law rheology models, and on a symmetry assumption on the flow. We numerically solve the associated traveling wave equations by using industrial data and in order to validate the models we prove existence and uniqueness of ...

متن کامل

Chemical patterns of erupting silicic magmas and their influence on the amount of degassing during ascent

We present a chemical model of magma degassing based on nine volatile species part of S-O-H-C-Fe-bearing rhyolitic melts. It is based on equilibrium, closed-system degassing, and does not take in account the crystallization of mineral phases. For given initial conditions at depth, the model calculates the gas composition as pressure decreases, as well as physical variables controlling conduit f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011